Articles on inverse Galois theory

L. Schneps: Construction explicite de 2-groupes extra-spéciaux, Publ. Fac. Sci. Besancon 1989-91 (1991).

L. Schneps: On cyclic field extensions of degree 8, Math. Scand. 71 (1992).

D. Martinais and L. Schneps: Polynomes à groupe de Galois diédral, Sém. Th. Nombres Bordeaux 4 (1992).

D. Martinais and L. Schneps: A complete parametrization of cyclic field extensions of 2-power degree, Manuscr. Math. 80 Fasc. 2 (1993).

L. Schneps: On reduction of p-groups, Comm. Alg. 21(5) (1993).

L. Schneps: On Galois groups and their maximal 2-subgroups, Isr. Math. J. 93 (1996).


Articles on Grothendieck-Teichmüller theory

L. Schneps: Groupe de Grothendieck-Teichmüller et automorphismes de groupes de tresses , CR Acad. Sci. 317 Série I (1993).

L. Schneps: Dessins d'enfants on the Riemann Sphere, in The Grothendieck Theory of Dessins d'Enfants, LMS Lecture Notes 200, Cambridge U. Press, 1994.

P. Lochak, L. Schneps: The Grothendieck-Teichmüller group and automorphisms of braid groups, in The Grothendieck Theory of Dessins d'Enfants, LMS Lecture Notes 200, Cambridge U. Press, 1994.

D. Harbater, L. Schneps: Approximating Galois orbits of dessins, in Geometric Galois Theory I, LMS Lecture Notes 242, Cambridge U. Press, 1997.

L. Schneps: The Grothendieck-Teichmüller group: a survey, in Geometric Galois Theory I, LMS Lecture Notes 242, Cambridge U. Press, 1997.

L. Schneps: Grothendieck's ``Long March through Galois Theory'', in Geometric Galois Theory I, LMS Lecture Notes 242, Cambridge U. Press, 1997.

P. Lochak, L. Schneps: On the universal Ptolemy-Teichmüller groupoid, in Geometric Galois Theory II, LMS Lecture Notes 243, Cambridge U. Press, 1997.

P. Lochak, L. Schneps: A cohomological interpretation of the Grothendieck-Teichmüller group, Invent. Math. 127 (1997).

P. Lochak, H. Nakamura, L. Schneps: On a new version of the Grothendieck-Teichm\"uller group, Note aux CR Acad. Sci. 315, Série I (1997).

L. Schneps: Fundamental groupoids of genus zero moduli spaces and braided tensor categories, Panoramas et Synthèses 7, SMF, 1999.

D. Harbater, L. Schneps: Fundamental groups of moduli and the Grothendieck-Teichmüller group, Trans. of the AMS 352 No. 7 (2000).

A. Hatcher, P. Lochak, L. Schneps: On the Teichmüller tower of mapping class groups, J. reine angew. Math. 521 (2000).

H. Nakamura, L. Schneps: On a subgroup of the Grothendieck-Teichmüller group acting on the tower of profinite Teichmüller modular groups, Invent. Math. 141 (2000).

L. Schneps: Special loci in moduli spaces of curves, in Galois Groups and Fundamental Groups , L. Schneps, ed., MSRI series 41, Cambridge University Press, 2003.

P. Lochak, H. Nakamura, L. Schneps: Eigenloci of 5 point configurations on the Riemann sphere and the Grothendieck-Teichmüller group, Math. J. Okayama 46 (2004).

L. Schneps: On the Poisson bracket on the free Lie algebra in two generators, J. Lie Theory 16 No. 1, 19-37 (2006).

L. Schneps: Automorphisms of curves and their role in Grothendieck-Teichmüller theory, Math. Nach. 279 No. 5-6, 656-671 (2006).

P. Lochak, L. Schneps: Open problems in Grothendieck-Teichmüller theory, in Problems on mapping class groups and related topics, Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006), 165-186.

L. Schneps: A review of the Grothendieck-Serre Correspondence: Long version     Short version--reprinted from the Mathematical Intelligencer, Vol. 29 No. 4, 2007.

Parker's conjecture , a short informal note containing the proof of Parker's conjecture on field of moduli of dessins with cyclic or 2-generator abelian groups. But see also the following short text by Corneliu Hoffman disproving the general case of Parker's conjecture.

F. Brown, S. Carr, L. Schneps: The algebra of cell-zeta values, Compositio Math. 146 (2010) No. 3, 731-771.

S. Carr, L. Schneps: Combinatorics of the double-shuffle Lie algebra in Galois-Teichmüller theory and Arithmetic Geometry, H. Nakamura, F. Pop, L. Schneps, A. Tamagawa, eds., Adv. Stud. Pure Math. 63, Mathematical Society of Japan, 2012.

L. Schneps: Double shuffle and Kashiwara-Vergne Lie algebras, J. Algebra 367 (2012), 54-74.

S. Baumard, L. Schneps, Period polynomial relations between double zeta values, to appear in Ramanujan J. Math., 2013.

L. Schneps: Dual-depth adapted irreducible formal multizeta values, to appear in Math. Scand., 2013.